

Pseudocalanus spp.

- Calanoid copepod 7 species total
- Habitat preference
 - Arctic/subarctic species
 - Arctic: P. acuspes and P. minutus
 - Temperate: P. newmani and P. mimus
 - all 4 species occur sympatrically

- Numerically dominant in North Pacific and Western Arctic
 - GAK/PWS (Coyle & Pinchuk, 2005)
 - Bering Sea (Coyle et al, 2008)
 - Chukchi Sea (Hopcroft et al, 2010; Questel et al, 2013) ~33% of holozooplankton community
 - Beaufort Sea (Smoot & Hopcroft, in prep) ~50% of copepod abundance
- Important food web component
- Taxonomic difficulties

Previous Pseudocalanus COI work

- Aarbakke et al. (2014): COI, CytB, and ITS-1 for phylogeography and demographic history analysis
 - P. acuspes, P. newmani, P. minutus, P. moultoni, and P. elongatus
 - suggests two diverging evolutionary branches
- No published COI work for the North Pacific or Western Arctic

Study design

- mtCOI sequencing from:
- GoA & PWS glacial fjords
 - Seward Line Research Program
- Chukchi
 - CSESP (Chukchi Sea Environmental Studies Program)
- Beaufort
 - Transboundary Project
- All samples collected during the 2013 field season
- Collection via 150 µm-mesh net
- Preserved in 190-proof ethanol

Objectives

- To determine the degree of population connectivity (gene flow) between the North Pacific and Western Arctic Ocean for 4 sibling species of *Pseudocalanus* using mitochondrial DNA
- Characterize population structure of Pseudocalanus spp.

Results

- 624 Pseudocalanus have been sequenced to date
 - Still filling in gaps

Region	P. acuspes	P. minutus	P. newmani	P. mimus	Total
Columbia Glacier	1	3	36	37	77
Icy Bay	0	16	60	15	91
GoA	1	0	39	34	74
Chukchi Sea	139	28	37	2	206
Beaufort Sea	80	49	35	2	176

Population comparison

F_{ST} distances

- Measure of population differentiation due to genetic structure
- 0 1 range: lower the F_{ST} value the higher the gene flow

P. mimus and P. newmani (Temperate)

P. mimus	Beaufort	Chukchi Sea	Columbia Glacier	Icy Bay	Gulf of Alaska
Beaufort	-				
Chukchi Sea	0.0329	-			
Columbia Glacier	0.33629*	-0.14918	-		
Icy Bay	0.32928*	-0.18557	0.01633	_	
Gulf of Alaska	0.35623*	-0.08704	0.00756	0.01998	-
P. newmani					
Beaufort	-				
Chukchi Sea	0.20185*	-			
Columbia Glacier	0.17982*	-0.00958	-		
Icy Bay	0.30906*	0.01269	0.01726	-	
Gulf of Alaska	0.32190*	0.01449	0.02226	0.00964	-

Population comparison

F_{ST} distances

- Measure of population differentiation due to genetic structure
- 0 1 range: lower the F_{ST} value the higher the gene flow

P. acuspes and P. minutus (Arctic)

P. acuspes	Beaufort	Chukchi Sea	Columbia Glacier	Gulf of Alaska
Beaufort	-			
Chukchi Sea	0.08620*	-		
Columbia Glacier	-0.71771	-0.96088	-	
Gulf of Alaska	0.51802	0.83288	1.00000	_
	•			
			Columbia	
P. minutus	Beaufort	Chukchi Sea	Columbia Glacier	Icy Bay
P. minutus Beaufort	Beaufort –	Chukchi Sea		Icy Bay
	Beaufort 0.00592	Chukchi Sea –		Icy Bay
Beaufort	-	Chukchi Sea - 0.14376		Icy Bay

Haplotype Networks

	P. acuspes	P. minutus	P. mimus	P. newmani
# Haplotypes	53	20	61	70
Hd	0.652	0.677	0.954	0.849

- Migrate-n estimates migration rates and effective population size using genetic data
- Allows for asymmetrical migration rates at different subpopulation sizes
- Another use: compare migrate model probabilities through Bayes Factors ratios of marginal likelihoods (Beerli & Palczewski, 2010)
- Decide models to compare a priority, based on hydrography and geography (not all scenarios are possible!)

P. acuspes (Arctic)

	CS↔BS	CS →BS	CS←BS
	Full	S to N	N to S
Bezier ILm	-1624.50	-1644.97	-1960.81
Model Probability	1	≈0	≈0
Choice	1	2	3

P. minutus (Arctic)

	CS↔BS	CS →BS	CS←BS
	Full	S to N	N to S
Bezier ILm	-973.53	-1283.55	-1278.39
Model Probability	1	≈0	≈0
Choice	1	3	2

P. mimus (Temperate)

	Full	In	Out
Bezier ILm	-1445.07	-1718.41	-1493.43
Model Probability	1	≈0	≈0
Choice	1	3	2

Gulf of Alaska

→BS

Bezier	IL m
Model	Probability
Choice	THE PROPERTY OF

All North
-2000.32
0.095
2

Summary

- All four Pseudocalanus species identified via COI sequencing in all study areas
- Haplotype diversity highest in Temperate species: P. mimus and P. newmani
- Haplotype diversity lowest in Arctic species: P. acuspes and P. minutus
- Connection between Chukchi and Beaufort, and between PWS fjords and the GoA
- Large degree of northward gene flow across the Bering Sea and into the Chukchi Sea

Acknowledgments

- CSESP
 - ConocoPhillips Caryn Rea
 - Shell Michael Macrander
 - StatOil Steinar Eldøy
 - Olgoonik-Fairweather Sheyna Wisdom
 - R/V Westward Wind

- Seward Line M/V Tiglax (NPRB, EVOS, AOOS)
- Transboundary Program BOEM
- IAB Core Lab Ian Herriott
- Fellow graduate students for field collection assistance

